Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Anaerobic ethylene glycol degradation by microorganisms in poplar and willow rhizospheres.

Identifieur interne : 003707 ( Main/Exploration ); précédent : 003706; suivant : 003708

Anaerobic ethylene glycol degradation by microorganisms in poplar and willow rhizospheres.

Auteurs : D. Carnegie [Canada] ; J A Ramsay

Source :

RBID : pubmed:19132327

Descripteurs français

English descriptors

Abstract

Although aerobic degradation of ethylene glycol is well documented, only anaerobic biodegradation via methanogenesis or fermentation has been clearly shown. Enhanced ethylene glycol degradation has been demonstrated by microorganisms in the rhizosphere of shallow-rooted plants such as alfalfa and grasses where conditions may be aerobic, but has not been demonstrated in the deeper rhizosphere of poplar or willow trees where conditions are more likely to be anaerobic. This study evaluated ethylene glycol degradation under nitrate-, and sulphate-reducing conditions by microorganisms from the rhizosphere of poplar and willow trees planted in the path of a groundwater plume containing up to 1.9 mol l(-1) (120 g l(-1)) ethylene glycol and, the effect of fertilizer addition when nitrate or sulphate was provided as a terminal electron acceptor (TEA). Microorganisms in these rhizosphere soils degraded ethylene glycol using nitrate or sulphate as TEAs at close to the theoretical stoichiometric amounts required for mineralization. Although the added nitrate or sulphate was primarily used as TEA, TEAs naturally present in the soil or CO(2) produced from ethylene glycol degradation were also used, demonstrating multiple TEA usage. Anaerobic degradation produced acetaldehyde, less acetic acid, and more ethanol than under aerobic conditions. Although aerobic degradation rates were faster, close to 100% disappearance was eventually achieved anaerobically. Degradation rates under nitrate-reducing conditions were enhanced upon fertilizer addition to achieve rates similar to aerobic degradation with up to 19.3 mmol (1.20 g) of ethylene glycol degradation l(-1) day(-1) in poplar soils. This is the first study to demonstrate that microorganisms in the rhizosphere of deep rooted trees like willow and poplar can anaerobically degrade ethylene glycol. Since anaerobic biodegradation may significantly contribute to the phytoremediation of ethylene glycol in the deeper subsurface, the need for "pump and treat" or an aerobic treatment would be eliminated, hence reducing the cost of treatment.

DOI: 10.1007/s10532-008-9244-9
PubMed: 19132327


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Anaerobic ethylene glycol degradation by microorganisms in poplar and willow rhizospheres.</title>
<author>
<name sortKey="Carnegie, D" sort="Carnegie, D" uniqKey="Carnegie D" first="D" last="Carnegie">D. Carnegie</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chemical Engineering, Queen's University, Kingston, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Chemical Engineering, Queen's University, Kingston, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ramsay, J A" sort="Ramsay, J A" uniqKey="Ramsay J" first="J A" last="Ramsay">J A Ramsay</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19132327</idno>
<idno type="pmid">19132327</idno>
<idno type="doi">10.1007/s10532-008-9244-9</idno>
<idno type="wicri:Area/Main/Corpus">003693</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003693</idno>
<idno type="wicri:Area/Main/Curation">003693</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003693</idno>
<idno type="wicri:Area/Main/Exploration">003693</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Anaerobic ethylene glycol degradation by microorganisms in poplar and willow rhizospheres.</title>
<author>
<name sortKey="Carnegie, D" sort="Carnegie, D" uniqKey="Carnegie D" first="D" last="Carnegie">D. Carnegie</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chemical Engineering, Queen's University, Kingston, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Chemical Engineering, Queen's University, Kingston, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ramsay, J A" sort="Ramsay, J A" uniqKey="Ramsay J" first="J A" last="Ramsay">J A Ramsay</name>
</author>
</analytic>
<series>
<title level="j">Biodegradation</title>
<idno type="eISSN">1572-9729</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anaerobiosis (MeSH)</term>
<term>Chromatography, Gas (MeSH)</term>
<term>Ethylene Glycol (metabolism)</term>
<term>Fertilizers (MeSH)</term>
<term>Populus (metabolism)</term>
<term>Populus (microbiology)</term>
<term>Salix (metabolism)</term>
<term>Salix (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Anaérobiose (MeSH)</term>
<term>Chromatographie en phase gazeuse (MeSH)</term>
<term>Engrais (MeSH)</term>
<term>Populus (microbiologie)</term>
<term>Populus (métabolisme)</term>
<term>Salix (microbiologie)</term>
<term>Salix (métabolisme)</term>
<term>Éthylène glycol (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ethylene Glycol</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Populus</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Populus</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Populus</term>
<term>Salix</term>
<term>Éthylène glycol</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Anaerobiosis</term>
<term>Chromatography, Gas</term>
<term>Fertilizers</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Anaérobiose</term>
<term>Chromatographie en phase gazeuse</term>
<term>Engrais</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Although aerobic degradation of ethylene glycol is well documented, only anaerobic biodegradation via methanogenesis or fermentation has been clearly shown. Enhanced ethylene glycol degradation has been demonstrated by microorganisms in the rhizosphere of shallow-rooted plants such as alfalfa and grasses where conditions may be aerobic, but has not been demonstrated in the deeper rhizosphere of poplar or willow trees where conditions are more likely to be anaerobic. This study evaluated ethylene glycol degradation under nitrate-, and sulphate-reducing conditions by microorganisms from the rhizosphere of poplar and willow trees planted in the path of a groundwater plume containing up to 1.9 mol l(-1) (120 g l(-1)) ethylene glycol and, the effect of fertilizer addition when nitrate or sulphate was provided as a terminal electron acceptor (TEA). Microorganisms in these rhizosphere soils degraded ethylene glycol using nitrate or sulphate as TEAs at close to the theoretical stoichiometric amounts required for mineralization. Although the added nitrate or sulphate was primarily used as TEA, TEAs naturally present in the soil or CO(2) produced from ethylene glycol degradation were also used, demonstrating multiple TEA usage. Anaerobic degradation produced acetaldehyde, less acetic acid, and more ethanol than under aerobic conditions. Although aerobic degradation rates were faster, close to 100% disappearance was eventually achieved anaerobically. Degradation rates under nitrate-reducing conditions were enhanced upon fertilizer addition to achieve rates similar to aerobic degradation with up to 19.3 mmol (1.20 g) of ethylene glycol degradation l(-1) day(-1) in poplar soils. This is the first study to demonstrate that microorganisms in the rhizosphere of deep rooted trees like willow and poplar can anaerobically degrade ethylene glycol. Since anaerobic biodegradation may significantly contribute to the phytoremediation of ethylene glycol in the deeper subsurface, the need for "pump and treat" or an aerobic treatment would be eliminated, hence reducing the cost of treatment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19132327</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>10</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1572-9729</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Biodegradation</Title>
<ISOAbbreviation>Biodegradation</ISOAbbreviation>
</Journal>
<ArticleTitle>Anaerobic ethylene glycol degradation by microorganisms in poplar and willow rhizospheres.</ArticleTitle>
<Pagination>
<MedlinePgn>551-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10532-008-9244-9</ELocationID>
<Abstract>
<AbstractText>Although aerobic degradation of ethylene glycol is well documented, only anaerobic biodegradation via methanogenesis or fermentation has been clearly shown. Enhanced ethylene glycol degradation has been demonstrated by microorganisms in the rhizosphere of shallow-rooted plants such as alfalfa and grasses where conditions may be aerobic, but has not been demonstrated in the deeper rhizosphere of poplar or willow trees where conditions are more likely to be anaerobic. This study evaluated ethylene glycol degradation under nitrate-, and sulphate-reducing conditions by microorganisms from the rhizosphere of poplar and willow trees planted in the path of a groundwater plume containing up to 1.9 mol l(-1) (120 g l(-1)) ethylene glycol and, the effect of fertilizer addition when nitrate or sulphate was provided as a terminal electron acceptor (TEA). Microorganisms in these rhizosphere soils degraded ethylene glycol using nitrate or sulphate as TEAs at close to the theoretical stoichiometric amounts required for mineralization. Although the added nitrate or sulphate was primarily used as TEA, TEAs naturally present in the soil or CO(2) produced from ethylene glycol degradation were also used, demonstrating multiple TEA usage. Anaerobic degradation produced acetaldehyde, less acetic acid, and more ethanol than under aerobic conditions. Although aerobic degradation rates were faster, close to 100% disappearance was eventually achieved anaerobically. Degradation rates under nitrate-reducing conditions were enhanced upon fertilizer addition to achieve rates similar to aerobic degradation with up to 19.3 mmol (1.20 g) of ethylene glycol degradation l(-1) day(-1) in poplar soils. This is the first study to demonstrate that microorganisms in the rhizosphere of deep rooted trees like willow and poplar can anaerobically degrade ethylene glycol. Since anaerobic biodegradation may significantly contribute to the phytoremediation of ethylene glycol in the deeper subsurface, the need for "pump and treat" or an aerobic treatment would be eliminated, hence reducing the cost of treatment.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Carnegie</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Chemical Engineering, Queen's University, Kingston, ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ramsay</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>01</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Biodegradation</MedlineTA>
<NlmUniqueID>9100834</NlmUniqueID>
<ISSNLinking>0923-9820</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005308">Fertilizers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>FC72KVT52F</RegistryNumber>
<NameOfSubstance UI="D019855">Ethylene Glycol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000693" MajorTopicYN="N">Anaerobiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002849" MajorTopicYN="N">Chromatography, Gas</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019855" MajorTopicYN="N">Ethylene Glycol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005308" MajorTopicYN="N">Fertilizers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>07</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>12</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19132327</ArticleId>
<ArticleId IdType="doi">10.1007/s10532-008-9244-9</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ramsay, J A" sort="Ramsay, J A" uniqKey="Ramsay J" first="J A" last="Ramsay">J A Ramsay</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Carnegie, D" sort="Carnegie, D" uniqKey="Carnegie D" first="D" last="Carnegie">D. Carnegie</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003707 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003707 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19132327
   |texte=   Anaerobic ethylene glycol degradation by microorganisms in poplar and willow rhizospheres.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19132327" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020